skip to main content


Search for: All records

Creators/Authors contains: "Ebenfelt, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Abstract We consider the obstruction flatness problem for small deformations of the standard CR 3-sphere. That rigidity holds for the CR sphere was previously known (in all dimensions) for the case of embeddable CR structures, where it also holds at the infinitesimal level. In the 3-dimensional case, however, a CR structure need not be embeddable.Unlike in the embeddable case, it turns out that in the nonembeddable case there is an infinite-dimensional space of solutions to the linearized obstruction flatness equation on the standard CR 3-sphere and this space defines a natural complement to the tangent space of the embeddable deformations. In spite of this, we show that the CR 3-sphere does not admit nontrivial obstruction flat deformations, embeddable or nonembeddable. 
    more » « less
  3. null (Ed.)
    Abstract We study the Bergman metric of a finite ball quotient $\mathbb{B}^n/\Gamma $, where $n \geq 2$ and $\Gamma \subseteq{\operatorname{Aut}}({\mathbb{B}}^n)$ is a finite, fixed point free, abelian group. We prove that this metric is Kähler–Einstein if and only if $\Gamma $ is trivial, that is, when the ball quotient $\mathbb{B}^n/\Gamma $ is the unit ball ${\mathbb{B}}^n$ itself. As a consequence, we characterize the unit ball among normal Stein spaces with isolated singularities and abelian fundamental groups in terms of the existence of a Bergman–Einstein metric. 
    more » « less