skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ebenfelt, Peter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We consider the obstruction flatness problem for small deformations of the standard CR 3-sphere. That rigidity holds for the CR sphere was previously known (in all dimensions) for the case of embeddable CR structures, where it also holds at the infinitesimal level. In the 3-dimensional case, however, a CR structure need not be embeddable.Unlike in the embeddable case, it turns out that in the nonembeddable case there is an infinite-dimensional space of solutions to the linearized obstruction flatness equation on the standard CR 3-sphere and this space defines a natural complement to the tangent space of the embeddable deformations. In spite of this, we show that the CR 3-sphere does not admit nontrivial obstruction flat deformations, embeddable or nonembeddable. 
    more » « less
  2. null (Ed.)
    Abstract We study the Bergman metric of a finite ball quotient $$\mathbb{B}^n/\Gamma $$, where $$n \geq 2$$ and $$\Gamma \subseteq{\operatorname{Aut}}({\mathbb{B}}^n)$$ is a finite, fixed point free, abelian group. We prove that this metric is Kähler–Einstein if and only if $$\Gamma $$ is trivial, that is, when the ball quotient $$\mathbb{B}^n/\Gamma $$ is the unit ball $${\mathbb{B}}^n$$ itself. As a consequence, we characterize the unit ball among normal Stein spaces with isolated singularities and abelian fundamental groups in terms of the existence of a Bergman–Einstein metric. 
    more » « less